

ADEO Deployable De-orbit Sail Subsystem

Passive De-orbiting for Clean Space Missions

2: 2.5 m² ADEO-N sail (deployed configuration)
3: Impression of the increasing amount of objects in the low earth orbit (@ Image by ESA)

HPS Germany is a "turnkey supplier" for commercial passive de-orbiting subsystems based on deployable sails enabling CleanGreen space missions through utilizing residual atmosphere by drag-sails to decelerate for significantly quicker annihilation in reentry fire. Based on the collabora-

tion with renowned partners and contracted by ESA as well as funded by the Bavarian Ministry of Economics and the German space Agency DLR, HPS developed the complete ADEO-product family for the return all kinds of spacecrafts and satellites:

ADEO-L (Large for satellites between 100-2000 kg) ADEO-N (Nano for nanosats and larger: 1-100 kg) ADEO-M (Medium class: overlapping L- and N-class)

Unique features of ADEO are:

- ultra-light weight (lower mass than additional propellant for active de-orbiting)
- scalable sail size (1,5 m² to > 100 m²) tailored to each spacecraft mass
- generic (standard interfaces with adjustable interface brackets to spacecraft)
- completely passive (no need for active control, if demanded: own battery with dead man switch).

ADEO is always - no exemption to this rule! - cheaper than any other solution for accelerating descent.

De-orbit Example:

- 500 kg mass
- 500 km orbit
- De-orbit without sail: 45 years
- De-orbit with sail (25 m²): 4 years

A collaboration of:

NVENT Together

1: Section of ADEO-L Engineering Model (deployment testing on ground)

Technical Features:

- · Motorized deployment
- · Own deployment control electronics
- · Optional: own battery for automatic deployment in case of satellite failure
- · No onboard GNC required
- · Dragsail area: 25 m² (customizable from 5 m² to 100 m²)
- · Subsystem Mass: 9,2 kg (depending on sail size)
- · Subsystem Dimensions: 43 cm x 43 cm x 18 cm
- · Materials withstand > 25 years de-orbiting time (UV, ATOX, space debris impact, thermal gradients, etc.).

ADEO-L AND ADEO-M

2: ADEO-L Engineering Model (deployment test

on ground)

3: Animation of 25 m² ADFO-L with a 0.8 m x 0.6 m x 1.2 m satellite with a satellite mass of 300 kg during atmospheric entry

General Description:

- Scalable drag-augmentation subsystem to passively de-orbit satellites between 100 kg and 2000 kg, within 25 years (or much shorter, if needed)
- Customizable sail areas depending on
- spacecraft mass and de-orbit time needs.

Recent Project Examples:

- ADEO-1 (2014-2017, in contract to ESA): development of an Engineering Model; extensive test program (deployment in hot and cold TVAC conditions, vibration, rapid decompression, numerous material level testing).
- ADDA (2017, in contract to ESA): detailed dynamical analysis considering various perturbations (tumbling, SRP, ...); theoretical verification that de-orbiting via dragsails is
- ADEO-2 (2018-2021, in contract to ESA): development of a first PFM ready for integration and launch in 2021/22.
- ADEO-L1: targeted for an IOV-flight in 2021/22.

4: Animation of ADEO-N de-orbiting a 3U-Cubesat (Cubesat: © ORORATEC, Animation: © HPS)

Technical Features:

- · Initiation of the deployment via a simple signal
- · Two-step deployment: 1) out of the box; 2) sail deployment (allowing the subsystem also to be used in e. g. 6U, 12U cube satellites).
- · Dragsail area: 1,5 m² 5 m²
- · Stowed size: 10 cm x 10 cm x 6-10 cm (0,6-1U)
- · Mass: 1 kg.

ADEO-N

5: ADEO-N parabolic flight campaign end 2019 6: ADEO-N1 launched in 11/2018 onboard ELECTRON (stowed configuration shortly before deployment) (original picture source Rocket Lab LISA)

7: ADEO-N1 during vibration qualification test in stowed configuration (©test performed at Fraunhofer EMI)

General Description:

- Dragsail for cubesat/nano-satellite applications (1 kg - 100 kg satellites)
- Completely passive de-orbiting without GNC within 25 years or much shorter
- Customizable sail areas depending on spacecraft mass and de-orbit time needs.

Recent Project Examples:

- ADEO-N1 (NABEO, 2018-2019): First mission called "Pride of Bavaria" (deployment of 2.5 m² dragsail, launched on Rocket Lab Electron mission called "It's Business Time" in November 2018 from New Zealand (development co-funded by the Bavarian Ministry of Economic Affairs; launch sponsored by Rocket Lab and Ecliptic, USA).
- Parabolic Flight (2019-2020): Detailed investigation of deployment behavior under 0-g, tailoring of design w.r.t. reliability and mass (project co-funded by the German Space Agency/German Ministry of Economics).
- Next launch targeted for mid 2021.