Munich | Bucharest

ADEO in top position in NASA’s technology report


February 2024

HPS with ADEO in top position in NASA’s technology report

Since its inception, the U.S. space agency NASA has been the primary driver of progress in aerospace technology. NASA’s Scientific and Technical Information (STI) program plays a key role in ensuring that NASA maintains this important role. Its Technical Reports Server contains one of the largest collections of aerospace science STI in the world, including “Technical Publications” on critical research and achievements of lasting value.

 

Focus on deorbit technologies

The aim of the latest publication, published in February 2024, on groundbreaking technologies, particularly in the field of small satellites, is, among other things, to present the world’s leading deorbit technologies, which can be used to technically implement the new regulation on the disposal of LEO satellites, which has been sharply limited from 25 to 5 years in both the USA and Europe. In its evaluation criteria for technologies, NASA is primarily guided by the TRL standard of the respective products and also pays great attention to the scalability achieved.

 

ADEO has it all: top values up to TRL-9, scalability and flight successes

According to NASA, the deployable brake sail system ADEO from HPS occupies the leading position on the global market in the category of passive deorbit systems. This is because ADEO not only offers technological maturity up to the peak value of TRL-9, but also a successful flight heritage and is also prepared for equipping various small satellite formats thanks to the HPS series production of an entire product family. This broad protection of HPS’s leading position with ADEO has been widely recognized by NASA – despite the fact that it is a competitor with several projects in this field:

“The Drag Augmentation Deorbiting System (ADEO) is a drag sail developed by the German company High Performance Space Structure Systems (HPS). The sail is scalable and HPS has already launched a number of missions with different configurations up to TRL 9. The ADEO-N series is tailored for small satellite missions of 20-250 kg, while the ADEO-M and ADEO-L series are designed for larger missions of 100-700 kg and 500-1500 kg respectively. The ADEO-N series corresponds to a sail size of 5±2 m2, while ADEO-M covers areas of 15 ± 5 m2. There are also smaller versions, especially for picosatellites (ADEO-P) and CubeSats (ADEO-C), and the possibility to configure the sail size according to customer requirements. Various missions have already tested the ADEO-N product family. The NABEO-1 was launched on a Rocket Lab Electron rocket kick stage in 2018. The sail was deployed just 90 minutes after launch. There was a problem measuring whether the drag sail was initially deployed, but visual ground observations confirmed successful deployment and performance. At the end of December 2022, the ADEO-2 sail was launched into space by the ION-2 spacecraft carrier of the Italian launch service provider D-Orbit. The successful deployment was recorded by the ION carrier’s on-board camera.”

 

ADEO – Deorbit technology as a prerequisite for launch authorization

With this presentation in one of the most important technology documentations of the US space agency NASA, HPS with ADEO becomes a highly visible beacon in the worldwide field of passive deorbit systems for all satellites that have to comply with the new 5-year deorbit requirement in order to be approved for launch by American or European launchers

KEAN II passes the acid test


January 2024

KEAN II passes the acid test at the University of the German Armed Forces and in the field

KEAN, the integrated deployable lightweight manpack complete antenna from HPS and its development partners, has taken a decisive step forward in the KEAN II (Second Generation) version: it passed the tough link test at the University of the German Armed Forces in Munich in December 2023 and the handling test in the field. This brings the goal of the joint HPS project much closer: the development of a complete system for bidirectional satellite communication based on preliminary developments already carried out by HPS and these specifications:

  • Conformance to satellite operators (e.g. EUTELSAT, INTELSAT)
  • Ku-band, 1.2 m diameter, also X- and Ka-band capable
  • Including communication system, electronics, battery, tripod, backpack carrying system
  • Total weight <20 kg
  • Commissioning in under 15 minutes from backpack transport to satellite link
  • Innovative, cybernetic folding mechanism based on the opening and closing of flowers
  • Design and definition of components and production processes suitable for series production for a rapid transition to series production in large quantities.

Partners in the project are:

  • The system supplier MTEX (Wiesbaden) with a focus on ground stations and electronics.
  • The start-up Blackwave (Ottobrunn) with the economical series production of complex carbon components.
  • The Chair of Carbon Composites (LCC) at the Technical University of Munich for the design of innovative extremely lightweight reflector fins.
  • The Bundeswehr University for defining the user requirements and carrying out the antenna link tests with satellites.

The additional antenna deployment tests in rough terrain in the Bavarian Alps were closely monitored from the air by camera-guided drones; they provided complete documentation of the challenges, but also of the success of these tests. Videos are available at the YouTube Channel. Particular attention was paid to features and elements such as these during the tests:

  1. Wearing comfort off-road (walking and running) with different body sizes
  2. Assembly and disassembly over time in rough terrain (bushes, gravel, snow)
  3. Speed of unfolding and folding
  4. Handling by untrained test persons
  5. Wind load compatibility
  6. Handling in cold conditions (requirement: from -30o C to +55 o C)
  7. Robust construction

The target markets for applications of this completely new technology for communication via satellite, especially on X-, Ku- and Ka-band, cover all three conceivable directions:

  • commercial, such as journalistic reporting from rough terrain
  • institutional, such as rescue and disaster relief operations
  • military, such as for small special forces operating independently of vehicles without a direct connection to the base of fully equipped large units
  • scalable up to 3.6 m, also for mobile transportation on small vehicles.

Beyond the technical successes, KEAN II is currently growing wings from a completely different direction: the European Commission’s major IRIS2 project to establish absolutely secure connectivity via a dedicated multi-orbit constellation of several hundred satellites from LEO to GEO is giving a significant boost to all those application scenarios that were previously considered to have only seen very hesitant development due to their dependence on non-European constellations and individual satellites. This applies in particular to the institutional and military markets, both of which are now growing into larger dimensions.

The last stage of development was funded by the German Aerospace Center (DLR) as part of the ILKA project with funds from the Federal Ministry of Economics and Climate on the basis of a decision taken by the German Bundestag.

The magic triangle: competence – quality – capacity


January 2024

Servicing Europe´s ambitions in space from Romania

In less than a blink of an eye, it will be a full decade that Romania´s leading space-SME “High Performance Structures Inovatie si Desvoltare S.R.L.” will look back to the beginnings of the company´s history in 2016, when it opened its office in Bucharest. Founded to meet the needs for additional capacities of HPS Munich, HPS RO quickly developed ttowards becoming one of the most renowned full-service spacetech-companies from ESA-member states in the Eastern Europe.
Just one question to managing director Astrid Draguleanu:

From the very beginnings and through the years, you have been in the position to significantly participate in shaping and guiding the company´s development. From your perspective, which factors are the ones that keep pushing HPS forward on the road of success?
From our point of view, there are three rock solid pillars the company´s success rests on.
Number one: COMPETENCE. HPS RO is an engineering company, with driven top engineers trained in the sectors of engineering, development, assembly, secondary and tertiary structures, thermal and RF-components, mechanical ground support equipments. In addition, we have managed to combine forces with commercial and institutional suppliers and partners, contributing competencies in special segments like precision manufacturing, welding, process verification, and assembly tests. So when one´s looking for a onestop source of competence in Romania and ESA´s Eastern European presence as a whole, they will sure find it in Bucharest.

Number two: QUALITY. In the Space Industry, quality is attributed to those who manage to comply to the specific standards and building up an immaculate heritage of successful steps on the ladder to the top. HPS RO proved that it has taken those steps, and done it with at an amazing pace: In the past eight years we have contributed to a total of twelve Space Missions so far. To get an idea of what´s behind that, let us just take a more detailed look at the contributions we´ve made in the area of mechanical ground handling and support equipment, MGSE:

  • Purge Equipment for the JUICE Spacecraft on behalf of Airbus Germany
  • Satellite Vertical Integration Stand for the Biomass-Mission, Airbus U.K.
  • Instrument & Optical Bench Lfting Frames, Copernicus Chime Mission, OHB
  • Instrument Turntable Support Stand and Instrument Turntable, Instrument Alignment Trolley, Instrument Lifting Device, Multipurpose Adapter, Vibration Test Adapter, Vertical Integration Stand, Instrument Support Structure and Instrument Mass Dummy for the METOP mission, Airbus Germany
  • Satellite Hoisting Device, transport containers, various adaptors – in total 14 MGSE-assemblies for Copernicus CIMR by HPS Germany.

Number three: CAPACITY. From the very beginning, it has been absolutely clear to all of us that HPS RO has a great future, by focusing on its character as a company with high professional level and not afraid of hard work. That is why building and keeping up capacities is yet another pillar we use. Take, for example, the fact that, before having even one contract to justify the expenditures, we started out from the beginning with production facilities, giving room the even the most ambitious dreams of development. And it proved to be the golden path to go: Apart from servicing all current needs of customers, we were most happy to have the capacities for starting out the series production of the HPS Satellite Dragsail product family “ADEO”, when the winds of change reached politics and deorbit technology became a legal prerequisite to let a satellite go into space to begin with. Of course, we apply this philosophy of “growth follows capacity” also to our HR-management. Today we employ a total of 20 engineers in Bucharest, growing in numbers at top speed. We are convinced that the reason for the whole success story is the delicate balance we have learned to keep in our magical triangle of COMPETENCE, QUALITY, and CAPACITY.”

The Munich-based space-tech company HPS had this development in mind more than ten years ago, when no one else was really thinking about ways to avoid space debris. With great support from the space agencies ESA and DLR, the DLR institutes in Bremen and Braunschweig, the companies DSI, Bremen, and formerly HTS, Coswig, plus a seven-digit-investment of HPS, the company´s highly committed young team of experts has created an entire product family under the generic name ADEO, from the smallest versions ADEO-P (Pico), ADEO-C (Cube) and ADEO-N(Nano), ADEO-M (Medium) and the latest member of the group, ADEO-L (Large). The development master plan not only extends even further to possible ADEO variants with up to 100 square meters of braking surface, but also leaves enough room for derivatives with completely different applications, such as the monitoring of space debris smaller than1 cm directly in space.

In its largest flight-ready version to date, L1, ADEO has a take-off weight of 10 kg at dimensions of 43 cm x 43 cm x 25 cm; in contrast to the smaller versions, this unit also requires its own power supply for motor-controlled deployment of the masts and sails. ADEO-L1 generally fits perfectly on satellites up to the 1,500 kilo class.

In the first quarter of next year, ADEO-L1 will be integrated onto a satellite of the Belgian company Redwire for its first test flight at the end of 2024/beginning of 2025 as part of a EU program, while the versions ADEO-N1 and ADEO-N2 have already passed their baptism of fire in space. Approaching the fiery finale is currently ADEO-N2, deployed in December 2022. Since then, it has already lowered its satellite from an orbital altitude of 510 km to 460 kilometers in only 12 months without the aid of any fuel or attitude control. Expected “arrival” in a completely burnt-up state: mid2025 – and thus even around five times faster than without sails and twice as fast as prescribed.

ADEO-L1 will master this path of final in-orbit verification just as safely, company boss Dr.-Ing. Ernst K. Pfeiffer is certain. As with the other versions, it will then go straight into series production for which the company has special production facilities at its Munich and Bucharest sites.

ADEO L1 “ready for lift-off”: World’s largest operational brake sail for the disposal of space debris successfully tested


Dezember 2023

ADEO L1 “ready for lift-off”: World’s largest operational brake sail for the disposal of space debris successfully tested

HPS completes the ADEO sail fleet with its first largest version under the version named L1. Its 25 square meters of sail area unfolded successfully deployed on Monday, 4th of December 2023 in a final ground test after a complete completed PFM qualification campaign. This included vibration tests in all axes as well as tests under thermal vacuum, including hot and cold firing tests (tests to verify the deployment release mechanisms under extreme temperatures). The tests were carried out under responsibility of HPS Munich at the facilities of the DLR Institute of Space Systems in Bremen – a prime example of cooperation between industry and research & development. This final and most important test enjoyed great interest from the media (including SAT1, RTL, NTV, DPA) covering the 20-minute deflation process and interviewing the enthusiastic project team of HPS and DLR. Links to the articles and television videos can be found HERE.

This test is also a success of ESA’s GSTP program, which significantly supported the development of ADEO-L1 financially and technically. Technology programs in general are essential for independent SMEs in the space industry and their products on the way to market readiness and worldwide series sales.

The ADEO brake sails deploy after the end of the satellite’s mission and brace themselves against the resistance of the atmosphere that still prevails in orbits up to an altitude of just under one thousand kilometers. This deployment immediately leads to a drastic reduction of the speed of the satellite and the entire package sets off on its accelerated descent towards the earth’s atmosphere, where it then burns up in the frictional heat of up to two thousand degrees Celsius. The entire return process takes even significantly less time than the latest guidelines prescribe. Until recently, the process could take up to twenty-five years, while it must now be completed within five years. And, to ensure that operators follow the rules, launch service providers such as SpaceX no longer even take satellites into space if they are not equipped with the appropriate return technology from the outset.

The Munich-based space-tech company HPS had this development in mind more than ten years ago, when no one else was really thinking about ways to avoid space debris. With great support from the space agencies ESA and DLR, the DLR institutes in Bremen and Braunschweig, the companies DSI, Bremen, and formerly HTS, Coswig, plus a seven-digit-investment of HPS, the company´s highly committed young team of experts has created an entire product family under the generic name ADEO, from the smallest versions ADEO-P (Pico), ADEO-C (Cube) and ADEO-N(Nano), ADEO-M (Medium) and the latest member of the group, ADEO-L (Large). The development master plan not only extends even further to possible ADEO variants with up to 100 square meters of braking surface, but also leaves enough room for derivatives with completely different applications, such as the monitoring of space debris smaller than1 cm directly in space.

In its largest flight-ready version to date, L1, ADEO has a take-off weight of 10 kg at dimensions of 43 cm x 43 cm x 25 cm; in contrast to the smaller versions, this unit also requires its own power supply for motor-controlled deployment of the masts and sails. ADEO-L1 generally fits perfectly on satellites up to the 1,500 kilo class.

In the first quarter of next year, ADEO-L1 will be integrated onto a satellite of the Belgian company Redwire for its first test flight at the end of 2024/beginning of 2025 as part of a EU program, while the versions ADEO-N1 and ADEO-N2 have already passed their baptism of fire in space. Approaching the fiery finale is currently ADEO-N2, deployed in December 2022. Since then, it has already lowered its satellite from an orbital altitude of 510 km to 460 kilometers in only 12 months without the aid of any fuel or attitude control. Expected “arrival” in a completely burnt-up state: mid2025 – and thus even around five times faster than without sails and twice as fast as prescribed.

ADEO-L1 will master this path of final in-orbit verification just as safely, company boss Dr.-Ing. Ernst K. Pfeiffer is certain. As with the other versions, it will then go straight into series production for which the company has special production facilities at its Munich and Bucharest sites.

HPS wins German government space competition with ADEO deorbit sail


November 2023

Space sails from the ADEO series enable legal launch and disposal of satellites

As part of the National Program for Space and Innovation and based on the decision of the Budget Committee in November 2022, the German Space Agency launched a competition for promising space innovations. The winner can expect a fully organized and financed demonstration flight with launch by 31.12.2025. On Thursday, 23 November 2023, the Federal Government’s Space Coordinator, Dr Anna Christmann, selected Munich-based space technology company HPS as the winner of the competition in the small satellite payload category with its ADEO-Cube space sail version at the 2023 Small Satellite Conference. The ADEO product family is designed as a series with different model types (Pico, Cube, Nano, Medium, Large), with which all satellites from the Cubesats to the larger representatives with 1.5 tons (class “M”) are automatically removed from low Earth orbit (LEO) and disposed of at the end of the mission. This so-called “deorbiting” with the ADEO braking sail not only fulfills, but even undercuts the maximum duration of 5 years that will apply from October 2024 instead of the 25-year guideline that has been in place since the 1960s. Quite simply, this means that no satellite will soon be accepted for launch without special on-board technology, such as the appropriate space sail from HPS’s ADEO series, if it cannot otherwise be legally disposed of. Since SpaceX, for example, as the leading launch service provider, will be introducing this rule from October 2024, it will apply to practically all future satellites, including those that are already in the design and manufacturing phase today.
As HPS CEO Ernst K.Pfeiffer, there is still only one alternative to ADEO, but it “is chemical, expensive and – in the case of a damaged satellite – inoperable”, the passionate aerospace engineer states about the market position of the ADEO space sail: “ADEO is currently the cheapest, most reliable and cleanest solution for legal deorbiting on the global market, available in all classes thanks to series production at HPS Bucharest and HPS Munich, and highly competitive in the hotly contested commercial market for satellite technology.We at HPS, especially our development team, are all very pleased that our sustainable technology has been recognized by the Small Satellite Competition at the highest level.”

ESA´s “Zero Debris Charter” finalized – HPS among the first to sign


November 2023

ESA´s “Zero Debris Charter” finalized – HPS among the first to sign

Initiated by ESA´s office for “Strategy and Transformation” a considerable group of European space companies, including HPS, got together in order to jointly draft and now implement this continent´s set of rules for sustainable use of space. HPS is one of the first companies to sign the document on November 7th, 2023. Though legally non-binding, the “Zero Debris Charter” aims at putting an end to the inconsiderate and irresponsible pollution of space with tech-junk. In detail, the Charter clearly names the following targets:

  1. The probability of space debris generation through collisions and break-ups should remain below 1 in 1,000 per object during the entire orbital lifetime. A suitable aggregate probability threshold for constellations of satellites in the low Earth orbit region should be identified.
  2. Timely clearance of low Earth orbit and geostationary Earth orbit regions should be achieved with a probability of success of at least 99% after end of mission, including through external means when necessary.
  3. The casualty risk from re-entering objects should remain significantly lower than 1 in 10,000, striving towards zero casualty. A suitable aggregate risk threshold for constellations of satellites in the low Earth orbit region should be identified.
  4. Routine and transparent information sharing should be facilitated and active participation in strengthening global space traffic coordination mechanisms should be encouraged.
  5. Access to timely and accurate data on space objects down to a size of 5 cm or smaller in low Earth orbit and 20 cm or smaller in geostationary Earth orbit should be improved to enhance decision making capabilities for collision avoidance.*

Ernst K. Pfeiffer, CEO of HPS at the signature ceremony: “In our days now space is rapidly developing into the most important resource for the implementation of new technologies shaping our future on Earth. All efforts to preserve space from the beginning are therefore nothing less than efforts to preserve the fundamental conditions of life and its prosperity for humankind´s generations to come.”

*For more see:
*https://esoc.esa.int/zero-debris-community-update
*https://www.esa.int/Space_Safety/Clean_Space/World-first_Zero_Debris_Charter_goes_live
*https://www.esa.int/Space_Safety/Clean_Space/ESA_s_Zero_Debris_approach
*https://www.esa.int/Space_Safety/Clean_Space/The_Zero_Debris_Charter

HPS presents ADEO space deorbit-sail, the world’s only product series of its kind for the legal disposal of disused satellites


November 2023

SpaceTech Expo Bremen: HPS presents the ADEO space deorbit-sail, the world’s only product series of its kind for the legal disposal of disused satellites

Less than 36 months ago, they were regarded by many as nothing more than political empty phrases: the “Green Deal” of the EU Commission in Brussels and the “National Orbital Debris Implementation Plan” of the White House in Washington. Satellites continued to be launched into near- and far-Earth orbits with the prospect of becoming junk and endangering other missions for a quarter of a century after they finally burned up in the atmosphere. But that’s over now: With the adoption of the “Zero Debris Charter”, ESA has committed itself on November 7, 2023 to taking steps towards total avoidance of any space debris from 2030 at the latest, and even more concretely, namely already from October 2024, SpaceX, with over one hundred launches per year the world’s most important launch service, will no longer transport any payloads that are not equipped for their disposal within a maximum of 5 years after the end of mission operations. And as early as 2023, the U.S. FCC (“Federal Communications Commission”), as the supervisory authority for the allocation of radio frequencies, sentenced a satellite operator to a fine of $150,000 for prolonging the operation of his satellite with the propellant actually reserved for disposal, thus recklessly endangering all other missions in the vicinity. While the sum might make some people smile, the FCC has now put an end to all symbolism with its decision to no longer grant radio licenses to satellites without on-board technology for return (technical term: “deorbit”) within 5 years of the end of operations. Under the double threat of operation AND launch ban, practically all operators are forced to equip new satellites only with guaranteed reliable deorbit technology from now on.

This can be done with the on-board propulsion system using chemical propellants while shortening mission and profit, but even that does not work in case of satellite failure and is also comparatively expensive due to the need for constant control monitoring from the ground.
The alternative is called ADEO: from HPS (Munich and Bukarest) a space sail, self-deploying at the end of the mission, which automatically removes the satellite from space well below the specified deorbit times, is ideally suited as baseline-tech and emergency parachute. Already 36 million flight kilometers before the planned maneuver, the German specialist for orbit guidance and collision avoidance OKAPI:Orbits (Braunschweig) as a cooperation partner calculates the point for the descent without risk for other satellites. In addition, HPS partner number two, the Italian company AVIOSONIC, in constant liaison with the worldwide air traffic control stations, ensures via new ADEO-features highly accurate position conrol and spares aircrafts from hits by any satellite parts that may not have burned up.
The ADEO product family with officially attributed highest possible level of reliability (“TRL 9”) holds tailor-made solutions for all satellites from the tiny Pico- and Cube-Sat up to the 1.5 tonner and for all low-Earth orbits up to a distance of 900 kilometers from Earth. All ADEO lines are mass-produced by HPS, yet they feature adaptive design for special requirements that may arise from satellite design.
The prices of all ADEO models without exception are considerably lower than the expenditures required for deorbiting with chemically driven engines – apart from the fact that the safety of the deorbit of even these satellites – for example in the event of a system failure – can actually only be guaranteed by an ADEO system carried along as a backup.

For more detailed information on ADEO see: https://www.hps-gmbh.com/en/portfolio/adeo-angel-on-wings/

Raumfahrtpolitik: Die Ampel steht auf Rot für strategische Positionierung und Mittelstand (Ein Kommentar)


September 2023

Space policy: The lights are red for strategic positioning and SMEs. (A commentary)

Erster September – der Herbst steht vor der Tür. Fallen werden bald die Blätter, so wie jedes Jahr. Fallen werden auch Entscheidungen, wie etwa über den nächsten Bundeshaushalt – ebenfalls wie jedes Jahr. Zum ersten Mal aber in der Geschichte der Raumfahrtpolitik drohen diese Budgetentscheidungen besonders jene Teile der Raumfahrtindustrie zu Fall zu bringen, als deren weiße Ritter sich die verantwortlichen Politiker in der Öffentlichkeit aller Wirklichkeit zum Trotz unverdrossen weiter präsentieren: Raumfahrt zum Schutz für die Erde und zum Nutzen der Menschen, wirtschaftliche Stärkung von Innovation durch den Mittelstand, Euphorie bei der Neugründung von Startups und nicht zuletzt den strategischen Wunsch Deutschland als starken Partner in der Weltwirtschaft und -politik zu behaupten.

Für diese Ziele schaltet die Ampel in Berlin aber nicht nur allein durch geplante Budgetkürzungen auf Rot: Mit den schon im April für die Diskussion im Herbst aufgemalten Eckpunkten einer neuen deutschen Raumfahrtstrategie, über die ebenfalls im Herbst beschieden werden soll, deutet sich unumkehrbar ein negativer Paradigmenwechsel in der Wirtschaftspolitik zur Raumfahrt an: da, wo „Resilienz“ gefordert wird, mit fliegenden Fahnen hin zur Großindustrie, da, wo „Exzellenz“ gezeigt werden soll, hin zur weiteren Stärkung der Staatsinstitutionen, dort, wo „Souveränität“ gefragt ist, im Eilschritt hin zum Fortdelegieren von Zielsetzung und Programmführung unter den Rocksaum der mächtigen EU. Und die deutsche Raumfahrt profitiert von noch mehr Engagement der Politik: Die für jede politische Sonntagsrede ach so wichtigen Startups erhalten kostenlosen Nachhilfeunterricht im Umgang mit der Bürokratie und ihren Antragsformularen, die Forschungslandschaft wird effektiver durch bessere Vernetzung, und KMU, die Kraft aus der Mitte? Sie erhalten Unterstützung auf neuem Niveau – moralisch. Oder wie sollte sonst eine Budgetkürzung bei einer weltweit anerkannten Zukunftstechnologie und -fähigkeit (z.B. die Beteiligung an Infrastrukturthemen wie für eine europäische satellitengestützte Kommunikation IRIS²) mit einer Neuauflage einer Raumfahrtstrategie zusammenpassen?

Offenbar sollen also nun beide Handlungsstränge, das Kürzen des Raumfahrtbudgets und die neue, ausdrücklich für jedwedes Budget passende Raumfahrtstrategie harmonisch bei der Gestaltung der künftigen Raumfahrt-Wirtschaftspolitik zusammenwirken. Das Ganze so gekonnt formuliert, dass der flüchtige Leser meinen könnte, es ginge voraus in die helle Zukunft und nicht zurück ins dunkle Mittelalter der Raumfahrtpolitik.

Noch ist es nicht so weit, und damit es auch nicht so weit kommt, hat Ernst K. Pfeiffer in seiner Funktion als Sprecher des Raumfahrt-Mittelstandes (AKRK und Best of Space) zusammen mit deren Mitgliedern noch im Juli einen offenen Brandbrief im Namen der engagierten deutschen Raumfahrt-KMU und Startups direkt an den Bundeskanzler Olaf Scholz geschrieben und zudem das Angebot von Finanzminister Christian Lindner zum Dialog im August angenommen, um auf die drohenden Gefahren wirtschaftlicher und strategischer Verluste hinzuweisen.

Three months from Kick-off until the breadboard of the feed is tested


July 2023

Three months from Kick-off until the breadboard of the feed is tested

The picture shows our breadboard model of the feed developed by HPS for the BANT antenna during the RF test done at MVG Italy using the StarLab measurement system. The purpose of the test is to validate the feed design by comparing the RF simulations with the results of the measurement.
Adopting the New Space approach, it took only three months from the project Kick-off until the breadboard of the feed is tested. The flight model of the BANT antenna, where this feed will be installed, will be ready to be integrated on the spacecraft at the end of this year, the satellite will be then placed in Low Earth Orbit for a remote sensing mission.

Heinrich Hertz launch successful, Ka-band antenna deployed


July 2023

Antenna specialist HPS congratulates German Aerospace Center, DLR

With the perfect launch on 05.07.2023 of the last Ariane 5, the Heinrich Hertz mission has now begun. The technical ambitions of the project now depend crucially on the reliability of the invisible umbilical cord of the data transmission between sky and earth, satellite and ground station as on the #sidedeployable “H2NBA” (Heinrich Hertz North Beam Antenna) from the house of the German antenna specialist HPS.

The Ka-band antenna from HPS with reflector (completely made of CFRP), feed-chain & tower, “hold-down-and-release-” as well as “deployment- and pointing-mechanism“, is extremely lightweight and at the same time geometrically stable. It offers high Eigenfrequency and is not only suitable for the intended data transmission in the high-frequency Ka-band, but also for the even higher frequency band Q/V-band. On 09.07.2023 the HPS-Antenna has successfully been deployed, which is always one of the most critical steps of larger satellite antennas after launch. Now it means, the mission’s data transfer can start.

Ernst K. Pfeiffer, CEO of HPS: “We warmly congratulate DLR, the mission prime OHB, our direct customer TESAT (payload responsible) and all others involved in this ambitious project on the launch of the mission and the successful first steps in setting the satellite into operation. All of us at HPS are proud to have contributed our part to the central communications technology with the H2NBA sviveling antenna.”

The Heinrich Hertz Mission and its partners:
The Heinrich Hertz mission is the first time that a dedicated German communications satellite has been launched to research and test new technologies and communications scenarios. The mission is thus also making a contribution to the information society in Germany. The Heinrich Hertz mission is being led by the German Space Agency at the German Aerospace Center (DLR) in Bonn on behalf of the Federal Ministry of Economics and Climate Protection (BMWK) and with the participation of the Federal Ministry of Defense (BMVg). OHB-System AG was contracted to develop and build the satellite. Also involved in the development and testing of the satellite are the companies IABG GmbH, MDA AG and TESAT GmbH & Co. KG are also involved in the development and testing of the satellite. The ground segment with the control center in Bonn is being handled by OHB Digital Connect in conjunction with CGI. The sites for the new ground stations are located in Hürth (North Rhine-Westphalia) and Neustrelitz (Mecklenburg-Western Pomerania). Arianespace is responsible for launching the mission on board the Ariane 5 launcher (VA261). A total of 42 partners are involved in the mission – 14 of them on the scientific payload – one of them is HPS.